1. <form id='Nv6Fzy'></form>
        <bdo id='Nv6Fzy'><sup id='Nv6Fzy'><div id='Nv6Fzy'><bdo id='Nv6Fzy'></bdo></div></sup></bdo>

          • 当前位置:首页 >> 临床医学 >>

            gut microbiota and human health with an emphasis on the use of microencapsulated


            Hindawi Publishing Corporation Journal of Biomedicine and Biotechnology Volume 2011, Article ID 981214, 12 pages doi:10.1155/2011/981214

            Review Article The Gut Microbiota and Human Health with an Emphasis on the Use of Microencapsulated Bacterial Cells
            Satya Prakash, Catherine Tomaro-Duchesneau, Shyamali Saha, and Arielle Cantor
            Biomedical Technology and Cell Therapy Research Laboratory, Departments of Biomedical Engineering and Physiology and Arti?cial Cells and Organs Research Center, Faculty of Medicine, McGill University, 3775 University Street, Montreal, QC, Canada H3A 2B4 Correspondence should be addressed to Satya Prakash, satya.prakash@mcgill.ca Received 19 November 2010; Revised 16 February 2011; Accepted 11 April 2011 Academic Editor: Eric C. Martens Copyright ? 2011 Satya Prakash et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. The gut microbiota plays a crucial role in maintaining health. Alterations of the gut bacterial population have been associated with a number of diseases. Past and recent studies suggest that one can positively modify the contents of the gut microbiota by introducing prebiotics, probiotics, synbiotics, and other therapeutics. This paper focuses on probiotic modulation of the gut microbiota by their delivery to the lower gastrointestinal tract (GIT). There are numerous obstacles to overcome before microorganisms can be utilized as therapeutics. One important limitation is the delivery of viable cells to the lower GIT without a signi?cant loss of cell viability and metabolic features through the harsh conditions of the upper GIT. Microencapsulation has been shown to overcome this, with various types of microcapsules available for resolving this limitation. This paper discusses the gut microbiota and its role in disease, with a focus on microencapsulated probiotics and their potentials and limitations.

            1. Introduction
            The gut microbiota, which resides in the gastrointestinal tract (GIT) and is also termed micro?ora, plays an important role in human health and disease. The GIT is comprised of the stomach, the duodenum, the jejunum, the ileum, the colon, the rectum, and the anal canal. The lower digestive tract, speci?cally the colon, is the primary site of importance for bacterial cell colonization; however, upper digestive tract microorganisms are also of importance. The bacterial population of the gut has been studied in diseases such as colon cancer, in?ammatory bowel diseases (IBD), hypercholesterolemia, nonalcoholic fatty liver disease (NAFLD) and others. Certain bacterial populations, such as lactic acid bacteria, have been shown to positively in?uence health. Hence, attempts to modify the micro?ora, towards those bacteria, for disease treatment and prevention should prove advantageous. For this purpose, prebiotics, probiotics, and synbiotics have been used. The delivery of viable probiotic bacteria is impeded by the harsh conditions of the upper GIT, hence, a vessel for delivering optimum cell viability to the lower GIT is required. Microcapsules can be used as a

            vehicle with the capability to protect the viability and activity of orally delivered bacterial cells through the upper GIT. This paper will ?rst give an overview of the gut microbiota and its main characteristics, focusing on its role in colon cancer, IBD, and hypercholesterolemia. Modulation of the gut microbiota to promote health will then be described through the use of probiotics, prebiotics, and synbiotics, with probiotics as a main focus. Microencapsulation and types of microcapsules will be described along with their success in the treatment and prevention of diseases. Finally, the paper will conclude with a discussion on this ?eld’s future.

            2. The Gastrointestinal Bacterial System
            The gut microbiota contains a broad spectrum of microorganisms, totalling 1013 to 1014 bacterial cells, but has not been completely explored as of yet [1]. The importance of the gut micro?ora is exempli?ed by the fact that the number of bacterial cells outnumbers human cells by a factor of ten [2]. The human intestinal habitat contains 300 to 500 di?erent species of bacteria, varying signi?cantly in content

            2

            Journal of Biomedicine and Biotechnology

            Aerobic organisms (upper GIT)

            Anatomical GIT region

            pH of GIT region

            Main contents of the region

            Number of bacterial cells/gram of GIT region contents

            Prominent bacterial populations

            Stomach

            1-2

            Pepsin, amylase (from salivary glands), mucus

            < 103

            Lactobacilli, streptococci

            Small intestine
            6-7

            Duodenum Jejunum Ileum

            Pancreatic enzymes, bicarbonate, bile salts, mucus

            104?7

            Lactobacilli, Escherichia coli, Enterococcus Faecalis

            Large intestine
            5-7

            Anaerobic organisms (lower GIT)

            Ascending colon Transverse colon Descending colon

            Bicarbonate, mucus

            1010?12

            Lactic acid bacteria, Bacteroides, Bifidobacterium bifidum

            Figure 1: The GIT characteristics (oxygen distribution, pH, bacterial populations, and bacterial cell counts) and the localization of the various gut bacterial populations, termed microbiota.

            between individuals [3]. Most gut bacteria reside in the lower part of the digestive tract, in the large intestine, since the upper tract consists of high levels of acid, bile, and pancreatic secretions which are toxic to most microorganisms, as shown in Figure 1 [3]. Even though some bacterial species of the gut are potential pathogens, the constant interaction between the host and its microbes usually remains bene?cial to the health of the host [4]. It has been demonstrated that the gut bacterial population plays an important role in their host’s metabolism and energy consumption, especially in the digestion and absorption of nutrients [1, 5]. The upper portion of the GIT, made up of the stomach and the duodenum, harbours very low numbers of microorganisms, with less than 1000 bacterial cells per gram of contents, with the predominant microorganisms present being Lactobacilli and Streptococci [6, 7]. The relatively low number of microorganisms found in the upper digestive tract, although some are of great importance in human disease, can be explained by the presence of high levels of acid, bile, and pancreatic secretions, as aforementioned [7, 8]. One important organism found in the stomach, which can withstand these harsh conditions, is Helicobacter pylori, a microorganism responsible for ulcers and stomach cancer [9]. There is also a phasic propulsive motor activity in the

            upper GIT which impedes any stable bacterial colonization [10]. Lower in the digestive tract are found the jejunum and the ileum where there is a gradual increase in the bacterial numbers from 104 to approximately 107 cells per gram of contents by the time the distal ileum is reached [7]. Once in the large intestine, the tract is heavily populated by anaerobes with up to 1012 cells per gram of luminal contents [10]. This paper focuses on the lower part of the digestive tract, due to its abundant bacterial population. Bacteria are classi?ed into genera and species based on their individual phenotypic and genotypic characteristics, with a number of di?erent genera found actively residing in the human GIT. The dominant anaerobic genera are Bacteroides, Bi?dobacterium, Eubacterium, Clostridium, Peptococcus, Peptostreptococcus, and Ruminococcus [4, 11]. The main genera of facultative anaerobic bacteria are Escherichia, Enterobacter, Enterococcus, Klebsiella, Lactobacillus, and Proteus [4, 11]. The proportion and numbers of these bacteria can vary, depending on a number of genetic and environmental factors, including disease state and one’s food intake [1, 11–13]. The main functions of the micro?ora were mostly elucidated by investigations with animals bred under germ-free conditions, with the functions broadly quali?ed as metabolic, trophic, and protective [3, 14, 15].

            Journal of Biomedicine and Biotechnology The gut microbiota has a signi?cant impact on host metabolism, participating in microbial-mammalian co-metabolism. The microbiota is considered a multifunctional organ with metabolic capabilities that humans have not yet fully evolved into their own genomes [16]. It has the ability to break down indigestible plant polysaccharides, termed dietary ?bers and also plays an important role in the biotransformation of conjugated bile acids, described in more detail later in this paper [17–20]. The importance of the gut microbiota in vitamin synthesis was demonstrated many years ago with the use of germ-free animals [21]. Experiments on a chick animal model demonstrated the synthesis of ribo?avin, vitamin B, pantothenic acid, vitamin B12 , folic acid, nicotinic acid, thiamine, and biotin by the gut microbiota [22]. Furthermore, Pseudomonas and Klebsiella sp., two resident organisms of the small intestine, were specifically shown to synthesize signi?cant amounts of vitamin B12 [23]. As described, the gut microbiota has extensive roles to play in normal human metabolism.

            3 of disorders that are characterized by a chronic and relapsing in?ammation of the GIT [35]. The two most prominent forms of IBD are Crohn’s Disease (CD) and ulcerative colitis (UC), with the bacterial ?ora as an important factor and contributor of the in?ammation [36, 37]. Su?erers of IBD have a higher bacterial attachment to gut epithelial surfaces when compared to that found in healthy individuals [38]. The link between intestinal mucosal in?ammation and the resident bacteria has been further demonstrated, in vivo, using rats and mice treated with broad-spectrum antibiotics [39]. This treatment mitigates, although only temporarily, mucosal in?ammation in animals with IBD, suggesting that the resident bacteria are causing the in?ammation [39]. Furthermore, an overpopulation of the Bacteroides genera on the gut epithelium leads to an increased occurrence of transmural in?ammatory lesions [3]. Early research demonstrated that the presence of Escherichia coli is linked to active UC and contributes to the development of in?ammation [40]. E. coli has also been linked to CD, with the presence of speci?c adherent-invasive species found in the resected ileum of patients [41, 42]. This e?ect appears to be species speci?c as only certain phylogenetic groups of E. coli were found to be more frequent in UC and CD patients when compared with healthy controls [43, 44]. It is clear that the gut micro?ora plays an important role in IBD pathology and an e?cient therapy is still required. 3.3. Gut Microbial System and Hypercholesterolemia. Hypercholesterolemia is a disorder whereby an individual demonstrates an elevated serum cholesterol level. For many decades now this disorder has been recognized as a signi?cant risk factor associated with atherosclerosis and coronary heart disease [45]. Current treatment options to lower serum cholesterol levels involve the use of pharmacological agents such as statins which act by inhibiting HMG-CoA reductase, the rate-limiting enzyme of cholesterol biosynthesis [46]. Statins make up a group of compounds that are generally well tolerated but remain expensive and have signi?cant side-e?ects, including gastrointestinal problems, such as diarrhoea, but may also include severe liver and skeletal abnormalities [47–49]. Bearing the potential signi?cant consequences of hypercholesterolemia in mind, the importance of the gut microbiota in cholesterol metabolism and the pathogenesis of hypercholesterolemia, a new paradigm is suggested for the development of a successful treatment. As early as 1959, research was performed to elucidate the role of the gut microbiota in cholesterol homeostasis with researchers demonstrating that germ-free rats, administered a diet without signi?cant amounts of cholesterol, nonetheless showed higher serum-cholesterol values than control rats administered the same diet [50]. Several mechanisms have been proposed as methods by which the gut microbiota may modulate cholesterol levels within the host [51]. Recent developments have demonstrated that the composition of the microbiota and diet is directly correlated with cholesterol levels in vivo, speci?cally, the number of Bi?dobacteria found in the gut is positively correlated with higher levels of high-density lipoprotein (HDL) [52–54]. In contrast, the number of Coriobacteriaceae is correlated with higher

            3. The Gut Microbiota and Its Role in Human Health and Disease
            The gut microbiota has gained importance in disease aetiology and pathology, with emerging evidence demonstrating its role in disease [1, 24]. A number of diseases have been associated with alterations of the gut microbiota, and if one can elucidate the exact link between the two one can begin to successfully treat and prevent these disorders through the modulation of the number and/or species of microorganisms present. Some disorders associated with the micro?ora include colon cancer, IBD, hypercholesterolemia and nonalcoholic fatty liver disease, among others [13, 24–28]. 3.1. Role of the Gut Microbiota in Colon Cancer. Colorectal cancer is the second most common cause of cancer death in men and women [29]. Although the genetic mechanisms of colorectal cancer are well established, there are several environmental factors that have also been implicated in the development of sporadic colon carcinomas [3, 30]. Foods, such as processed meats, which contain high levels of dietary fat, have been associated with an increased risk of colon cancer development when compared to the risk associated with a high intake of fruits, vegetables, grains, and ?sh [30, 31]. It was proposed that the e?ect of diet could be mediated by changes in the composition of the colonic micro?ora such that the intestinal bacteria are responsible for the initiation of colon cancer [3, 13]. Data shows that bacteria of the Bacteroides and Clostridium genera were associated with an increase in the incidence and growth rate of colonic tumors in tumor-induced animals, while genera such as Lactobacillus and Bi?dobacterium (well-characterized bacteria predominantly used in therapeutic probiotic formulations) appeared to prevent tumorigenesis [32, 33]. The properties of the colonic micro?ora make it a promising target for the development of a colon cancer therapeutic [34]. 3.2. In?ammatory Bowel Disease and the Gut Microbiota. IBD, prominent in Western countries, is made up of a group

            4 levels of non-HDL cholesterol [53]. Gut microbial activities in?uence lipid metabolism, bearing a signi?cant impact on hypercholesterolemia, by the modi?cation of bile acid metabolic patterns, by impacting the emulsi?cation, absorption, and storage properties of bile acids and by in?uencing the lipoperoxidation through bile acid signalling properties [19]. With these facts in mind, the modulation of the gut microbiota could potentially decrease hypercholesterolemia in a?ected patients.

            Journal of Biomedicine and Biotechnology acid bacteria, important components of the healthy gut microbiota and regarded as safe by the American FDA [63]. Other microorganisms occasionally used as probiotics are yeasts and ?lamentous fungi [63]. In this section, we describe the use of probiotics on colorectal cancer, IBD, hypercholesterolemia and NAFLD. Probiotics have been proposed and investigated as a potential treatment/prevention method for colorectal cancer. Early studies demonstrated that 1,2-dimethylhydrazine(DMH-) induced colon cancer in rats showed a decrease in mortality rate if the test animals were fed Streptococcus thermophilus-fermented skim milk [94]. Another research group demonstrated that Lactobacillus rhamnosus GG, in lyophilized form incorporated in a high-fat diet, was e?ective at reducing tumor incidence in the rat DMH colon cancer model [95]. Studies using Bi?dobacterium longum also demonstrated an inhibition of carcinogen-induced colon cancers and precursor lesions [96, 97]. Additional studies demonstrate a reduction of colon tumorigenesis markers following the incorporation of Lactobacillus acidophilus in a high-fat control diet in DMH colon cancer rats [98]. The probiotics are suggested to achieve a protective e?ect by interacting with the carcinogen(s) in the intestinal lumen (in the case of the DMH rat model, interaction with the DMH metabolites azoxymethane or methylazoxymethane) leading to a decrease in the potency/availability of the carcinogenic compound [97, 98]. Probiotics have also been investigated as a method of treatment for IBD. A trial in ulcerative colitis (UC) patients was performed to study the e?ect of the delivery of an oral probiotic capsule on the remission of the disorder [99]. The probiotic Bi?dobacteria were administered following treatment with an UC standard therapy [99]. It was demonstrated that 93.3% of the patients in the control group su?ered a disease relapse compared to only 20% of the patients administered the probiotic capsule [99]. A signi?cant reduction in in?ammation was also observed in the treatment group when compared to the control group [99]. Another study demonstrated the use of Faecalibacterium prausnitzii as a probiotic for treating Crohn’s Disease (CD) [36]. F. prausnitizii and its supernatant were both found to have anti-in?ammatory e?ects in vitro using peripheral blood mononuclear and colon adenocarcinoma cells and in vivo in a mouse model of induced colitis [36]. A number of other studies related to the e?ects of probiotics on the prevention and the treatment of IBD, described in another review, have been done, with varying success [100]. Early studies suggest that probiotic bacteria may have a bene?cial e?ect on hypercholesterolemic patients, by decreasing blood lipid levels [101]. A study was undertaken with hypercholesterolemic mice administered low levels of the probiotic Lactobacillus reuteri for a week [101]. The mice demonstrated a decrease in cholesterol and triglyceride levels and an increase in the HDL : LDL ratio [101]. A study was also performed with hyperlipidemic patients who were administered the probiotic Lactobacillus sporogenes over a three-month period [102]. Following treatment, these patients showed, on average, a 32% reduction in total cholesterol levels accompanied with a 35% reduction in

            4. Modulation of the Gut Microbiota for Human Health Bene?ts
            Past and current research has demonstrated that the gut microbiota plays an important role in the pathogenesis of a number of diseases. Certain bacteria, considered “good,” such as Bi?dobacteria and Lactobacilli, are shown to be correlated with a decrease in the occurrence of a number of disorders, suggesting that the targeted increase of these bene?cial bacteria could decrease the incidence and severity of prominent diseases. The colonic delivery of prebiotics and probiotics are methods that have been successfully used to modify the gut microbiota. Antibiotics can prove bene?cial in short-term use but their prolonged use may result in signi?cant side-e?ects. An important concern is the development of bacterial resistance which reduces the e?ectiveness of the therapy and further predisposes the patient to life-threatening illnesses caused by potential pathogens with increased resistance to the antibiotic. Current research focuses on prebiotics, probiotics, and a combination of both, termed synbiotics for modulating the gut microbiota. The Food and Agriculture Organization of the United Nations de?nes a prebiotic as a “non-viable food component that confers a health bene?t on the host, associated with a modulation of the microbiota” [55]. Prebiotic molecules consist of naturally occurring or synthetic sugars used by certain colonic bacteria, especially Bi?dobacteria, as a carbon source for growth and metabolism [56]. Numerous prebiotics have demonstrated their bene?cial e?ects on disease through modulators of the gut microbiota [57–61]. Prebiotic delivery nonspeci?cally increases the number of “good bacteria” not acting at the species level, which may be important in some disease states. On the other hand, probiotics are a method by which the gut microbiota can be speci?cally modulated for an individual to reestablish and maintain a healthy state. 4.1. Modulation of the Gut Microbiota by Probiotics Can Promote Human Health. The FAO and WHO de?ne probiotics as “live microorganisms which, when administered in adequate amounts, confer a health bene?t on the host” [62]. Probiotics are inexpensive, safe, free of long-term negative side-e?ects, and have already demonstrated bene?cial e?ects for treating immunological, digestive, and respiratory diseases [62]. Furthermore, these are naturally occurring organisms found in foods such as milk and yoghurt and, so, are widely accepted by the general public. The most common types of probiotic microorganisms are the lactic

            Journal of Biomedicine and Biotechnology

            5

            (1) Production of pathogen inhibitory substances

            (2) Blocking of pathogenic bacterial cells adhesion sites

            (3) Nutrient competition and production Gut lumen

            (4) Degradation of toxins and toxin receptors

            (5) Modulation of the immune responses

            Mucous layer

            Gut epithelium Bloodstream

            Probiotic bacteria Potentially pathogenic bacteria Inhibitory substances Nutrients

            Toxin receptors Toxins Antibodies Antigen presenting cells

            Figure 2: Pathways by which a probiotic can positively in?uence human health. They can in?uence human health by (1) production of pathogen inhibitory substances; (2) blocking of pathogenic bacteria adhesion sites; (3) nutrient competition and production; (4) degradation of toxins and toxin receptors; (5) modulation of innate immune responses.

            LDL [102]. Studies have also demonstrated that the delivery of certain strains of Lactobacilli can alleviate symptoms associated with IBD [103, 104]. Probiotics have also been proposed as a potential treatment option for NAFLD because of their modulating e?ect on the gut ?ora that could in?uence the gut-liver axis towards a healthy state. NAFLD is characterized by the release of in?ammatory cytokines and commensal bacteria have been shown to provoke anti-in?ammatory responses from the gut epithelia, suggesting a mechanism of action to treat the disease [105]. Probiotics can have an inhibitory impact on the development of NAFLD by a number of mechanisms: competitive inhibition of pathogenic bacterial strains, alteration of the in?ammatory e?ects of pathogenic strains through changes in cytokine signalling, improvement of the function of the epithelial barrier and direct decreases of proin?ammatory cytokines, including TNF-α [105]. VSL#3 is a high-potency medical food probiotic made up of a number of di?erent bacterial strains [106]. These strains

            make up 450 billion live lactic acid bacteria per packet: Bi?dobacterium breve, Bi?dobacterium longum, Bi?dobacterium infantis, Lactobacillus acidophilus, Lactobacillus plantarum, Lactobacillus paracasei, Lactobacillus bulgaricus, and Streptococcus thermophilus [106]. This combination, in both murine and human trials, demonstrated all of the mechanisms described as potential bene?cial targets for the treatment of NAFLD [107]. Murine models of acute liver injury have also shown a decrease in hepatic injury following the administration of various Lactobacillus and Bi?dobacterium species [108–110]. There are a number of mechanisms by which probiotics could be exerting their bene?cial e?ects, as shown in Figure 2. The mechanisms include (1) by the production of pathogen inhibitory substances; (2) by the blocking of pathogenic bacteria adhesion sites; (3) by nutrient competition and production; (4) by the degradation of toxins and toxin receptors; (5) by the modulation of immune responses [104].

            6
            1–1000 μm

            Journal of Biomedicine and Biotechnology

            Poly-L-Lysine

            Alginate core containing bacterial cells Genipin crosslinked chitosan
            (a) (b)

            Alginate coat

            Figure 3: The concept of microcapsules for probiotic delivery. (a) Alginate-Poly-L-Lysine (APA) and (b) Genipin Crosslinked Alginate Chitosan (GCAC) microcapsules.

            4.2. System for Delivering Probiotics to the GIT. Probiotics must be delivered to the target sites in su?cient number and metabolic active phase to be e?ective. Currently available probiotic formulations are excellent but have serious limitations. One of the major limitations is the delivery of probiotics to the lower GIT, with the presence of acids and bile greatly hindering the viability of the probiotics as they travel through the gut (speci?cally the acidic environment of the stomach). A delivery system is, hence, required to surpass this obstacle. Another complication is the presence of an immune system which can be induced and potentially attack the delivered cells. Hence, a method is required to protect the probiotic cells while maintaining high levels of probiotic viability and activity when delivered in the GIT. There are many methods available, each with its own limitations. This paper introduces microencapsulation and discusses its potentials and limitations in bacterial cell delivery to the GIT.

            5. Microencapsulation and Delivery of Probiotics
            Microencapsulation is a method de?ned as the “entrapment of a compound or a system inside a dispersed material for its immobilization, protection, controlled release, structuration and functionalization” [111]. There exists a great variety of microcapsules which can di?er in size, composition, and function, depending on the ?nal goal of the encapsulated product. Microcapsules can be used to entrap all sorts of substances: solids, liquids, drugs, proteins, bacterial cells, stem cells, and so forth [112–114]. With such a range of substances that can be entrapped, microcapsules can have an assortment of objectives and applications, whether for drug delivery, enzyme retrieval, arti?cial cell and arti?cial organ delivery or, as described in this review, for the delivery of live probiotic bacteria. There are a number of microcapsule delivery systems that have been proposed for the oral delivery of live bacterial cells, as detailed in Table 1. Sun and Gri?ths investigated the use of acid-stable beads made of gellan and xanthan gum for the immobilization of Bi?dobacterium [84]. The research group demonstrated that immobilized cells survived signi?cantly better than free cells after refrigeration in

            pasteurized yogurt for a period of 5 weeks [84]. One common encapsulation method, for viable cell immobilization, utilizes calcium alginate as a polymer [115]. However, one prominent di?culty encountered with the use of alginate beads is that these, alone, are not acid resistant and upon exposure to the low pH conditions encountered in the stomach, display signi?cant shrinkage and a decrease in mechanical strength [64]. A number of methods utilizing polymer cross-linking have been suggested, including formulations using carrageenan, alginate-poly-L-lysine, starch polyanhydrides, polymethacrylates, and enteric coated polymers [116]. Microencapsulation methods are still being developed and optimized to allow for increased gastrointestinal survival and immunoprotection. One newly developed type of microcapsule that shows promising results in terms of mechanical stability and pH resistance is the genipincrosslinked-alginate-chitosan (GCAC) microcapsule, shown in Figure 3 [87, 117]. One of the most commonly utilized and characterized formulations for microencapsulation is the alginate-polyL-lysine-alginate (APA) microcapsule [118]. This type of microcapsule has been used for many applications including drug, stem cell, and bacterial cell delivery. This method relies on a polyelectrolyte complexation mechanism for the association of the polymers, alginate and poly-L-lysine (PLL). Alginate is a naturally occurring biocompatible polymer, extracted from brown algae, that is increasingly being used in the biotechnology industry for a wide range of applications [119]. Alginate is an unbranched polysaccharide which contains 1,4 -linked β-D-mannuronic acid and α-L-guluronic acid blocks which are interdispersed with regions of the alternating structure, β-L-mannuronic acid-α-L-guluronic acid blocks [120]. PLL is a polypeptide made up of the amino acid L-lysine that is available in a variable number of chain lengths, determined by its molecular weight. It is a polycationic polymer that can be used during the coating step of microencapsulation. The addition of this polymer leads to the formation of a capsule membrane that provides selective permeability and immunoprotection. The alginate bead could not withstand the harsh conditions of the GIT in the absence of PLL, which provides it with an increased mechanical stability.

            Journal of Biomedicine and Biotechnology
            Table 1: Types of microcapsules available for the targeted delivery of probiotic bacteria. Types of Microcapsules Bacteria L. rhamnosus B. longum L. salivarius L. plantarum Alginate Beads L. acidophilus L. paracasei L. casei B. lactis L. reuteri Alginate-cellulose B. lactis acetate phthalate L. acidophilus B. animalis subsp. lactis Alginate-chitosan L. bulgaricus Alginate-chitosan-AcrylB. animalis subsp. lactis Eze Alginate-chitosanB. bi?dum alginate L. casei Alginate-chitosanB. animalis subsp. lactis Sureteric B. adolescentis Alginate-coated gelatin B. pseudolongum B. bi?dum Alginate-poly-L-lysineL. reuteri alginate L. casei L. acidophilus B. lactis Alginate-starch B. infantis L. casei Gelatin-gum B. infantis arabic-soluble starch B. longum Gelatin-toluene-2-4L. lactis diisocyanate Gellan-alginate B. bi?dum B. adolescentis B. bi?dum B. breve Gellan-xanthan B. infantis B. lactis B. longum Genipin-crosslinkedL. plantarum alginate-chitosan B. lactis Pectin-casein L. acidophilus Potato starch B. longum granules-amylose B. breve Whey protein B. longum L. rhamnosus B. longum S. thermophilus κ-carageenan L. bulgaricus S. lactis Reference(s)

            7 one wants to obtain. The characteristics of the microcapsule must also take into consideration the function that the microcapsule will ultimately undertake. There are generally three main stages to the process of microencapsulation. The ?rst step is the incorporation of the ingredients into a solution by mixing or dispersion, to make up the core of the microcapsule. This is then followed by mechanical operations, such as spraying or emulsi?cation, to form the droplets. The ?nal step of microencapsulation involves product stabilization through coating, followed by a number of physical or chemical processes [111]. Each step of microencapsulation can be optimized according to the desired characteristics of the ?nal formulation.

            [64–70]

            [71] [72, 73] [72] [64] [72] [74] [64, 75]

            6. Microencapsulated Probiotics
            There has been strong interest in the ?eld of microencapsulated probiotics. Research has shown that microencapsulated probiotics keep their viability better than free cells under stress in GIT deliveries. Research into the applications of microencapsulated probiotics is also ongoing, with promising results for the eventual treatment of a number of disorders, described in the following section. 6.1. Microencapsulated Probiotics and Colon Cancer. The potential antitumorigenic properties of a microencapsulated formulation of L. acidophilus were studied in Min (multiple intestinal neoplasia) mice carrying a germline Apc mutation which spontaneously develop numerous pretumoric intestinal neoplasms [29]. The mice were gavaged APA microcapsules of L. acidophilus over a period of 12 weeks followed by the enumeration, the classi?cation and the histopathology of adenomas [29]. Unfortunately, no statistically signi?cant di?erence was observed between the treatment and control group in terms of the number of large intestinal (colonic) adenomas [29]. On a more positive note, there was a statistical di?erence between the control and treatment groups following analysis of the small intestine number of adenomas and gastrointestinal intraepithelial neoplasias [29]. These preliminary results suggest that microencapsulated probiotic bacteria could have a role in the development of a successful colon cancer therapeutic. 6.2. Microencapsulated Probiotics for Use in Cardiovascular Diseases. Recently, microcapsules containing bacterial cells have been developed as a cholesterol lowering therapy. Early research has demonstrated that certain Lactobacilli have a bile salt hydrolase (BSH) enzyme which can contribute to a signi?cant cholesterol lowering e?ect in vivo in cardiovascular diseases [121]. This enzyme contributes to the deconjugation of bile salts in the intestine [121]. The oral delivery of Lactobacillus has, therefore, emerged as a potential mechanism for inducing cholesterol lowering. Martoni et al. demonstrated that microencapsulated BSH-active bacteria are able to survive in a simulated human gastrointestinal model while maintaining cell viability and enzyme activity, which would not be possible with the direct delivery of nonmicroencapsulated bacterial cells [75].

            [76–78]

            [79–81] [82] [83]

            [84–86]

            [87] [88] [89] [90, 91]

            [92, 93]

            There are a number of di?erent methods used to fabricate microcapsules. The microencapsulation technique employed is determined by the type and the size of microcapsules

            8 Another microencapsulated probiotic Lactobacillus demonstrated cholesterol lowering capabilities in hypercholesterolemic animals, albeit with a di?erent mechanism of action involving a feruloyl esterase enzyme [122]. Lactobacillus fermentum, a feruloyl esterase active bacterium, was microencapsulated and delivered to hypercholesterolemic hamsters twice daily by oral gavage, for a period of 18 weeks [122]. Following treatment, hamster serum cholesterol, LDL cholesterol, and the atherogenic index were 21.36%, 31.40%, and 32.59% lower, respectively, in the treatment group when compared to the control group [122]. Histological studies were also performed and demonstrated that the microencapsulated probiotic reduced the progression of atherosclerotic lesions in the test animals [122]. This probiotic formulation was hence shown to be e?ective at managing excessive serum cholesterol and triglyceride levels [122]. With these results, the microencapsulation of probiotics is very promising for the development of a cholesterol-lowering therapeutic in cardiovascular diseases. Microencapsulation has the potential to be useful in other disease applications. It has been shown that, to be e?ective at reducing colon tumorigenesis, therapeutic probiotic microorganisms must remain viable in vivo [123]. The same study that demonstrated that the administration of L. acidophilus had an inhibitory e?ect on colon tumorigenesis showed that the amount of probiotic colonization of the GIT is directly linked to the rate of inhibition of tumorigenesis [98]. Since viability is vital to the mechanism of action of the probiotic, it is crucial to realize that, of the bacteria ingested, only 1% survive the gastric transit, limiting the overall therapeutic e?ect of any orally delivered bacterial formulation [124]. With unprotected probiotic formulations already demonstrating therapeutic potential, microencapsulation could prove bene?cial in increasing e?cacy.

            Journal of Biomedicine and Biotechnology for their suitability and e?cacy in proper animal models and human clinical trials. Furthermore, a speci?c mechanism of action must be developed for each application so that an evidence-based probiotic formulation can be designed that can potentially compete with well-articulated and welldeveloped drug formulations. The elucidation of the mechanism of action of the probiotic would allow for a better selection process. As described before, the administration of bacteria from the same species but of di?erent strains resulted in noncomparable e?ects, further emphasizing the importance of mechanistic studies as part of the probiotic selection process. The variability in experimental design poses a great challenge in probiotic research that must be addressed properly. Since the compositions of the gut micro?ora are not identical, there can be contradicting results as to the bene?cial e?ect of probiotics on the microbiota of the GIT. This composition variability also gives rise to potential di?culties in terms of the use of animal models for the investigation of probiotic formulations. A targeted wellde?ned formulation should be developed in which microencapsulation will play a critical role. There are excellent trials available that demonstrate the e?cacy of these formulations but safety is an issue that remains to be investigated. As mentioned earlier, rigorous in vitro and in vivo animal and human clinical studies are needed to demonstrate the e?cacy and the long-term safety of microencapsulated and other probiotic formulations. Nevertheless, the literature suggests that probiotics will lead to e?cient therapeutic formulations for the treatment and/or prevention of a number of animal and human health disorders.

            Acknowledgments
            The authors would like to acknowledge the Canadian Institute of Health Research (CIHR) Grant (MPO 64308) and grants from Micropharma to Dr. S. Prakash, the support of the Industrial Innovation Scholarship (IIS) BMP Innovation—NSERC, FQRNT and Micropharma Limited to C. T. Duchesneau, and the NSERC Undergraduate Student Research Award to Arielle Cantor.

            7. Challenges and Future Outlooks
            The gut microbiota is a complex system that has been shown to in?uence health. Although probiotics, prebiotics, and synbiotics have shown great potential for the treatment of a number of disorders, there are still a number of challenges that remain to be addressed before they can be successfully used to treat/prevent disorders. Microencapsulation has provided a signi?cant advancement in the ?eld, allowing for the delivery of a greater number of viable bacteria to the GIT. However, a number of issues concerning the formulation of a microencapsulated probiotic still need to be addressed before a successful product can be developed. The process and methods for microencapsulation require further investigations and optimization. As aforementioned, there are a number of microencapsulation types being employed, each varying in e?ciency and application. Furthermore, the industry scale production of microencapsulated probiotics, at a cost-e?ective level, and investigation of formulation stability, cell viability and retention of metabolic activity of the encapsulated bacterial cells requires further development for speci?c bacterial strains and diseases. Most of the probiotics are strain speci?c, they therefore must be developed and characterised in vitro and evaluated

            References
            [1] P. D. Cani, “The role of the gut microbiota in energy metabolism and metabolic disease,” Current Pharmaceutical Design, vol. 15, no. 13, pp. 1546–1558, 2009. [2] P. J. Turnbaugh, R. E. Ley, M. Hamady, C. M. Fraser-Liggett, R. Knight, and J. I. Gordon, “The human microbiome project,” Nature, vol. 449, no. 7164, pp. 804–810, 2007. [3] F. Guarner and J. R. Malagelada, “Gut ?ora in health and disease,” The Lancet, vol. 361, no. 9356, pp. 512–519, 2003. [4] S. Salminen, C. Bouley, M. C. Boutron et al., “Functional food science and gastrointestinal physiology and function,” British Journal of Nutrition, vol. 80, supplement 1, pp. S147– S171, 1998. [5] H. Tilg, A. R. Moschen, and A. Kaser, “Obesity and the microbiota,” Gastroenterology, vol. 136, no. 5, pp. 1476–1483, 2009.

            Journal of Biomedicine and Biotechnology
            [6] J. Dicksved, M. Lindberg, M. Rosenquist, H. Enroth, J. K. Jansson, and L. Engstrand, “Molecular characterization of the stomach microbiota in patients with gastric cancer and in controls,” Journal of Medical Microbiology, vol. 58, no. 4, pp. 509–516, 2009. [7] F. Guarner, A. G. Khan, J. Garisch et al., Probiotics and prebiotics, 2008. [8] I. Mainville, Y. Arcand, and E. R. Farnworth, “A dynamic model that simulates the human upper gastrointestinal tract for the study of probiotics,” International Journal of Food Microbiology, vol. 99, no. 3, pp. 287–296, 2005. [9] C. Montecucco and R. Rappuoli, “Living dangerously: how helicobacter pylori survives in the human stomach,” Nature Reviews Molecular Cell Biology, vol. 2, no. 6, pp. 457–466, 2001. [10] F. Guarner, “Enteric ?ora in health and disease,” Digestion, vol. 73, supplement 1, pp. 5–12, 2006. [11] B. P. Willing, J. Dicksved, J. Halfvarson et al., “A pyrosequencing study in twins shows that gastrointestinal microbial pro?les vary with in?ammatory bowel disease phenotypes,” Gastroenterology, vol. 139, no. 6, pp. 1844–1854, 2010. [12] E. Culligan, C. Hill, and R. Sleator, “Probiotics and gastrointestinal disease: successes, problems and future prospects,” Gut Pathogens, vol. 1, no. 19, pp. 1–12, 2009. [13] C. D. Davis and J. A. Milner, “Gastrointestinal micro?ora, food components and colon cancer prevention,” Journal of Nutritional Biochemistry, vol. 20, no. 10, pp. 743–752, 2009. [14] C. Vael and K. Desager, “The importance of the development of the intestinal microbiota in infancy,” Current Opinion in Pediatrics, vol. 21, no. 6, pp. 794–800, 2009. [15] P. G. Falk, L. V. Hooper, T. Midtvedt, and J. I. Gordon, “Creating and maintaining the gastrointestinal ecosystem: what we know and need to know from gnotobiology,” Microbiology and Molecular Biology Reviews, vol. 62, no. 4, pp. 1157–1170, 1998. [16] J. Xu and J. I. Gordon, “Honor thy symbionts,” Proceedings of the National Academy of Sciences of the United States of America, vol. 100, no. 18, pp. 10452–10459, 2003. [17] L. V. Hooper, T. Midvedt, and J. I. Gordon, “How hostmicrobial interactions shape the nutrient environment of the mammalian intestine,” Annual Review of Nutrition, vol. 22, no. 1, pp. 283–307, 2002. [18] J. M. Campbell, G. C. Fahey, and B. W. Wolf, “Selected indigestible oligosaccharides a?ect large bowel mass, cecal and fecal short-chain fatty acids, pH and micro?ora in rats,” Journal of Nutrition, vol. 127, no. 1, pp. 130–136, 1997. [19] F. P. Martin, M. E. Dumas, Y. Wang et al., “A top-down systems biology view of microbiome-mammalian metabolic interactions in a mouse model,” Molecular Systems Biology, vol. 3, 2007. [20] P. B. Hylemon and J. Harder, “Biotransformation of monoterpenes, bile acids, and other isoprenoids in anaerobic ecosystems,” FEMS Microbiology Reviews, vol. 22, no. 5, pp. 475–488, 1998. [21] O. Mickelsen, “Intestinal synthesis of vitamins in the nonruminant,” Vitamins and Hormones, vol. 14, pp. 1–95, 1956. [22] M. E. Coates, J. E. Ford, and G. F. Harrison, “Intestinal synthesis of vitamins of the B complex in chicks,” British Journal of Nutrition, vol. 22, no. 3, pp. 493–500, 1968. [23] M. J. Albert, V. I. Mathan, and S. J. Baker, “Vitamin B12 synthesis by human small intestinal bacteria,” Nature, vol. 283, no. 5749, pp. 781–782, 1980. [24] P. D. Cani and N. M. Delzenne, “Interplay between obesity and associated metabolic disorders: new insights into the gut

            9
            microbiota,” Current Opinion in Pharmacology, vol. 9, no. 6, pp. 737–743, 2009. N. M. Delzenne and P. D. Cani, “Nutritional modulation of gut microbiota in the context of obesity and insulin resistance: potential interest of prebiotics,” International Dairy Journal, vol. 20, no. 4, pp. 277–280, 2010. M. G. Gareau, P. M. Sherman, and W. A. Walker, “Probiotics and the gut microbiota in intestinal health and disease,” Nature Reviews Gastroenterology and Hepatology, vol. 7, no. 9, pp. 503–514, 2010. S. W. Gratz, H. Mykkanen, and H. S. El-Nezami, “Probiotics and gut health: a special focus on liver diseases,” World Journal of Gastroenterology, vol. 16, no. 4, pp. 403–410, 2010. P. D. Scanlan, F. Shanahan, Y. Clune et al., “Cultureindependent analysis of the gut microbiota in colorectal cancer and polyposis,” Environmental Microbiology, vol. 10, no. 3, pp. 789–798, 2008. A. M. Urbanska, J. Bhathena, C. Martoni, and S. Prakash, “Estimation of the potential antitumor activity of microencapsulated Lactobacillus acidophilus yogurt formulation in the attenuation of tumorigenesis in Apc(Min/+) mice,” Digestive Diseases and Sciences, vol. 54, no. 2, pp. 264–273, 2009. H. L. Newmark, K. Yang, N. Kurihara, K. Fan, L. H. Augenlicht, and M. Lipkin, “Western-style diet-induced colonic tumors and their modulation by calcium and vitamin D in C57Bl/6 mice: a preclinical model for human sporadic colon cancer,” Carcinogenesis, vol. 30, no. 1, pp. 88–92, 2009. S. A. Bingham, “Meat or wheat for the next millennium? Plenary lecture. High-meat diets and cancer risk,” Proceedings of the Nutrition Society, vol. 58, no. 2, pp. 243–248, 1999. L. O’Mahony, M. Feeney, S. O’Halloran et al., “Probiotic impact on microbial ?ora, in?ammation and tumour development in IL-10 knockout mice,” Alimentary Pharmacology and Therapeutics, vol. 15, no. 8, pp. 1219–1225, 2001. H. Horie, K. Kanazawa, M. Okada, S. Narushima, K. Itoh, and A. Terada, “E?ects of intestinal bacteria on the development of colonic neoplasm: an experimental study,” European Journal of Cancer Prevention, vol. 8, no. 3, pp. 237– 245, 1999. D. H. Roukos, C. Katsios, and T. Liakakos, “Genotypephenotype map and molecular networks: a promising solution in overcoming colorectal cancer resistance to targeted treatment,” Expert Review of Molecular Diagnostics, vol. 10, no. 5, pp. 541–545, 2010. E. V. Loftus, “Clinical epidemiology of in?ammatory bowel disease: incidence, prevalence, and environmental in?uences,” Gastroenterology, vol. 126, no. 6, pp. 1504–1517, 2004. H. Sokol, B. Pigneur, L. Watterlot et al., “Faecalibacterium prausnitzii is an anti-in?ammatory commensal bacterium identi?ed by gut microbiota analysis of Crohn disease patients,” Proceedings of the National Academy of Sciences of the United States of America, vol. 105, no. 43, pp. 16731– 16736, 2008. F. Shanahan, “In?ammatory bowel disease: immunodiagnostics, immunotherapeutics, and ecotherapeutics,” Gastroenterology, vol. 120, no. 3, pp. 622–635, 2001. A. Swidsinski, A. Ladho?, A. Pernthaler et al., “Mucosal ?ora in in?ammatory bowel disease,” Gastroenterology, vol. 122, no. 1, pp. 44–54, 2002. S. Videla, J. Vilaseca, F. Guarner et al., “Role of intestinal micro?ora in chronic in?ammation and ulceration of the rat colon,” Gut, vol. 35, no. 8, pp. 1090–1097, 1994.

            [25]

            [26]

            [27]

            [28]

            [29]

            [30]

            [31]

            [32]

            [33]

            [34]

            [35]

            [36]

            [37]

            [38]

            [39]

            10
            [40] M. E. Cooke, S. P. Ewins, J. Hywel-Jones, and J. E. LennardJones, “Properties of strains of Escherichia coli carried in di?erent phases of ulcerative colitis,” Gut, vol. 15, no. 2, pp. 143–146, 1974. [41] A. Darfeuille-Michard, C. Neut, N. Barnich et al., “Presence of adherent Escherichia coli strains in ileal mucosa of patients with Crohn’s disease,” Gastroenterology, vol. 115, no. 6, pp. 1405–1413, 1998. [42] A. Darfeuille-Michaud, J. Boudeau, P. Bulois et al., “High prevalence of adherent-invasive Escherichia coli associated with ileal mucosa in Crohn’s disease,” Gastroenterology, vol. 127, no. 2, pp. 412–421, 2004. [43] R. Kotlowski, C. N. Bernstein, S. Sepehri, and D. O. Krause, “High prevalence of Escherichia coli belonging to the B2+D phylogenetic group in in?ammatory bowel disease,” Gut, vol. 56, no. 5, pp. 669–675, 2007. [44] A. Petersen, E. Nielsen, E. Litrup, J. Brynskov, H. Mirsepasi, and K. Krogfelt, “A phylogenetic group of Escherichia coli associated with active left-sided in?ammatory bowel disease,” BMC Microbiology, vol. 9, no. 1, article 171, 2009. [45] D. P. Barr, E. M. Russ, and H. A. Eder, “Protein-lipid relationships in human plasma. II. In atherosclerosis and related conditions,” The American Journal of Medicine, vol. 11, no. 4, pp. 480–493, 1951. [46] A. Patel, R. Singhania, A. Pandey, and S. Chincholkar, “Probiotic bile salt hydrolase: current developments and perspectives,” Applied Biochemistry and Biotechnology, vol. 162, no. 1, pp. 166–180, 2010. [47] V. G. Athyros, K. Tziomalos, A. Karagiannis, and D. P. Mikhailidis, “Atorvastatin: safety and tolerability,” Expert Opinion on Drug Safety, vol. 9, no. 4, pp. 667–674, 2010. [48] K. Toutouzas, M. Drakopoulou, I. Skoumas, and C. Stefanadis, “Advancing therapy for hypercholesterolemia,” Expert Opinion on Pharmacotherapy, vol. 11, no. 10, pp. 1659–1672, 2010. [49] D. W. Erkelens, M. G. A. Baggen, J. J. van Doormaal, M. Kettner, J. C. Koningsberger, and M. J. T. M. Mol, “Clinical experience with simvastatin compared with cholestyramine,” Drugs, vol. 36, no. 3, pp. 87–92, 1988. [50] H. Danielsson and B. Gustafsson, “On serum-cholesterol levels and neutral fecal sterols in germ-free rats. Bile acids and steroids 59,” Archives of Biochemistry and Biophysics, vol. 83, no. 2, pp. 482–485, 1959. [51] N. M. Delzenne, P. D. Cani, and A. M. Neyrinck, “Therapeutic microbiology: probiotics and related strategies,” in Prebiotics and Lipid Metabolism, chapter 14, pp. 183–192, ASM Press, Herndon, Va, USA, 2008. [52] M. Vijay-Kumar, J. D. Aitken, F. A. Carvalho et al., “Metabolie syndrome and altered gut microbiota in mice lacking toll-like receptor 5,” Science, vol. 328, no. 5975, pp. 228–231, 2010. [53] I. Martinez, G. Wallace, C. Zhang et al., “Diet-induced metabolic improvements in a hamster model of hypercholesterolemia are strongly linked to alterations of the gut microbiota,” Applied and Environmental Microbiology, vol. 75, no. 12, pp. 4175–4184, 2009. [54] J. Z. Xiao, S. Kondo, N. Takahashi et al., “E?ects of milk products fermented by Bi?dobacterium longum on blood lipids in rats and healthy adult male volunteers,” Journal of Dairy Science, vol. 86, no. 7, pp. 2452–2461, 2003. [55] Food and Agriculture Organization of the United Nations, “FAO technical meeting on prebiotics,” Journal of Clinical Gastroenterology, vol. 42, supplement 3, pp. S156–S159, 2007. [56] G. R. Gibson and M. B. Roberfroid, “Dietary modulation of the human colonic microbiota: introducing the concept of

            Journal of Biomedicine and Biotechnology
            prebiotics,” Journal of Nutrition, vol. 125, no. 6, pp. 1401– 1412, 1995. R. A. Rastall, “Functional oligosaccharides: application and manufacture,” Annual Review of Food Science and Technology, vol. 1, no. 1, pp. 305–339, 2010. P. Sharma, B. C. Sharma, V. Puri, and S. K. Sarin, “An openlabel randomized controlled trial of lactulose and probiotics in the treatment of minimal hepatic encephalopathy,” European Journal of Gastroenterology and Hepatology, vol. 20, no. 6, pp. 506–511, 2008. A. Bezkorovainy, “Probiotics: determinants of survival and growth in the gut,” American Journal of Clinical Nutrition, vol. 73, no. 2, pp. S399–S405, 2001. K. M. Tuohy, G. C. M. Rouzaud, W. M. Bruck, and G. R. Gibson, “Modulation of the human gut micro?ora towards improve health using prebiotics—assessment of e?cacy,” Current Pharmaceutical Design, vol. 11, no. 1, pp. 75–90, 2005. G. R. Gibson, E. R. Beatty, X. Wang, and J. H. Cummings, “Selective stimulation of bi?dobacteria in the human colon by oligofructose and inulin,” Gastroenterology, vol. 108, no. 4, pp. 975–982, 1995. Food and Agricultural Organization of the United Nations and World Health Organization, “Health and nutritional properties of probiotics in food including powder milk with live lactic acid bacteria,” 2001. S. Parvez, K. A. Malik, S. A. Kang, and H.-Y. Kim, “Probiotics and their fermented food products are bene?cial for health,” Journal of Applied Microbiology, vol. 100, no. 6, pp. 1171– 1185, 2006. W. Krasaekoopt, B. Bhandari, and H. Deeth, “The in?uence of coating materials on some properties of alginate beads and survivability of microencapsulated probiotic bacteria,” International Dairy Journal, vol. 14, no. 8, pp. 737–743, 2004. W. Ding and N. Shah, “Acid, bile, and heat tolerance of free and microencapsulated probiotic bacteria,” Journal of Food Science, vol. 72, no. 9, pp. M446–M450, 2007. K.-Y. Lee and T. R. Heo, “Survival of Bi?dobacterium longum immobilized in calcium alginate beads in simulated gastric juices and bile salt solution,” Applied and Environmental Microbiology, vol. 66, no. 2, pp. 869–873, 2000. P. Capela, T. K. C. Hay, and N. P. Shah, “E?ect of cryoprotectants, prebiotics and microencapsulation on survival of probiotic organisms in yoghurt and freeze-dried yoghurt,” Food Research International, vol. 39, no. 2, pp. 203–211, 2006. P. Muthukumarasamy and R. A. Holley, “Survival of Escherichia coli O157:H7 in dry fermented sausages containing micro-encapsulated probiotic lactic acid bacteria,” Food Microbiology, vol. 24, no. 1, pp. 82–88, 2007. V. Chandramouli, K. Kailasapathy, P. Peiris, and M. Jones, “An improved method of microencapsulation and its evaluation to protect Lactobacillus spp. in simulated gastric conditions,” Journal of Microbiological Methods, vol. 56, no. 1, pp. 27–35, 2004. S. Mandal, A. K. Puniya, and K. Singh, “E?ect of alginate concentrations on survival of microencapsulated Lactobacillus casei NCDC-298,” International Dairy Journal, vol. 16, no. 10, pp. 1190–1195, 2006. C. S. Favaro-Trindade and C. R. F. Grosso, “Microencapsulation of L. acidophilus (La-05) and B. lactis (Bb-12) and evaluation of their survival at the pH values of the stomach and in bile,” Journal of Microencapsulation, vol. 19, no. 4, pp. 485–494, 2002.

            [57]

            [58]

            [59]

            [60]

            [61]

            [62]

            [63]

            [64]

            [65]

            [66]

            [67]

            [68]

            [69]

            [70]

            [71]

            Journal of Biomedicine and Biotechnology
            [72] A. M. Liserre, I. R. Maria, and D. G. M. Bernadette, “Microencapsulation of Bi?dobacterium animalis subsp. lactis in modi?ed Alginate-chitosan beads and evaluation of survival in simulated gastrointestinal conditions,” Food Biotechnology, vol. 21, no. 1, pp. 1–16, 2007. [73] J. S. Lee, D. S. Cha, and H. J. Park, “Survival of freezedried Lactobacillus bulgaricus KFRI 673 in chitosan-coated calcium alginate microparticles,” Journal of Agricultural and Food Chemistry, vol. 52, no. 24, pp. 7300–7305, 2004. [74] N. T. Annan, A. D. Borza, and L. T. Hansen, “Encapsulation in alginate-coated gelatin microspheres improves survival of the probiotic Bi?dobacterium adolescentis 15703T during exposure to simulated gastro-intestinal conditions,” Food Research International, vol. 41, no. 2, pp. 184–193, 2008. [75] C. Martoni, J. Bhathena, A. M. Urbanska, and S. Prakash, “Microencapsulated bile salt hydrolase producing Lactobacillus reuteri for oral targeted delivery in the gastrointestinal tract,” Applied Microbiology and Biotechnology, vol. 81, no. 2, pp. 225–233, 2008. [76] K. Kailasapathy, “Survival of free and encapsulated probiotic bacteria and their e?ect on the sensory properties of yoghurt,” LWT—Food Science and Technology, vol. 39, no. 10, pp. 1221–1227, 2006. [77] K. Sultana, G. Godward, N. Reynolds, R. Arumugaswamy, P. Peiris, and K. Kailasapathy, “Encapsulation of probiotic bacteria with alginate-starch and evaluation of survival in simulated gastrointestinal conditions and in yoghurt,” International Journal of Food Microbiology, vol. 62, no. 1-2, pp. 47–55, 2000. [78] A. Homayouni, A. Azizi, M. R. Ehsani, M. S. Yarmand, and S. H. Razavi, “E?ect of microencapsulation and resistant starch on the probiotic survival and sensory properties of synbiotic ice cream,” Food Chemistry, vol. 111, no. 1, pp. 50–55, 2008. [79] W. C. Lian, H. C. Hsiao, and C. C. Chou, “Survival of bi?dobacteria after spray-drying,” International Journal of Food Microbiology, vol. 74, no. 1-2, pp. 79–86, 2002. [80] W. C. Lian, H. C. Hsiao, and C. C. Chou, “Viability of microencapsulated bi?dobacteria in simulated gastric juice and bile solution,” International Journal of Food Microbiology, vol. 86, no. 3, pp. 293–301, 2003. [81] H. C. Hsiao, W. C. Lian, and C. C. Chou, “E?ect of packaging conditions and temperature on viability of microencapsulated bi?dobacteria during storage,” Journal of the Science of Food and Agriculture, vol. 84, no. 2, pp. 134–139, 2004. [82] C. L. Hyndman, A. F. Groboillot, D. Poncelet, C. P. Champagne, and R. J. Neufeld, “Microencapsulation of Lactococcus lactis within cross-linked gelatin membranes,” Journal of Chemical Technology and Biotechnology, vol. 56, no. 3, pp. 259–263, 1993. [83] M. J. Chen, K. N. Chen, and Y. T. Kuo, “Optimal thermotolerance of Bi?dobacterium bi?dum in gellan-alginate microparticles,” Biotechnology and Bioengineering, vol. 98, no. 2, pp. 411–419, 2007. [84] W. Sun and M. W. Gri?ths, “Survival of bi?dobacteria in yogurt and simulated gastric juice following immobilization in gellan-xanthan beads,” International Journal of Food Microbiology, vol. 61, no. 1, pp. 17–25, 2000. [85] L. D. McMaster and S. A. Kokott, “Micro-encapsulation of Bi?dobacterium lactis for incorporation into soft foods,” World Journal of Microbiology and Biotechnology, vol. 21, no. 5, pp. 723–728, 2005. [86] L. D. McMaster, S. A. Kokott, S. J. Reid, and V. R. Abratt, “Use of traditional African fermented beverages as delivery vehicles for Bi?dobacterium lactis DSM 10140,” International

            11
            Journal of Food Microbiology, vol. 102, no. 2, pp. 231–237, 2005. H. Chen, W. Ouyang, M. Jones et al., “Preparation and characterization of novel polymeric microcapsules for live cell encapsulation and therapy,” Cell Biochemistry and Biophysics, vol. 47, no. 1, pp. 159–167, 2007. A. C. Oliveira, T. S. Moretti, C. Boschini, J. C. C. Baliero, O. Freitas, and C. S. Favaro-Trindade, “Stability of microencapsulated B. lactis (BI 01) and L. acidophilus (LAC 4) by complex coacervation followed by spray drying,” Journal of Microencapsulation, vol. 24, no. 7, pp. 673–681, 2007. S. Lahtinen, A. Ouwehand, S. Salminen, P. Forssell, and P. Myllarinen, “E?ect of starch- and lipid-based encapsulation on the culturability of two Bi?dobacterium longum strains,” Letters in Applied Microbiology, vol. 44, no. 5, pp. 500–505, 2007. A. Picot and C. Lacroix, “Encapsulation of bi?dobacteria in whey protein-based microcapsules and survival in simulated gastrointestinal conditions and in yoghurt,” International Dairy Journal, vol. 14, no. 6, pp. 505–515, 2004. A. A. Reid, J. C. Vuillemard, M. Britten, Y. Arcand, E. Farnworth, and C. P. Champagne, “Microentrapment of probiotic bacteria in a Ca2+ -induced whey protein gel and e?ects on their viability in a dynamic gastro-intestinal model,” Journal of Microencapsulation, vol. 22, no. 6, pp. 603–619, 2005. K. Adhikari, I. U. Grun, A. Mustapha, and L. N. Fernando, “Changes in the pro?le of organic acids in plain set and stirred yogurts during manufacture and refrigerated storage,” Journal of Food Quality, vol. 25, no. 5, pp. 435–451, 2002. P. Audet, C. Paquin, and C. Lacroix, “Immobilized growing lactic acid bacteria with k-carrageenan-locust bean gum gel,” Applied Microbiology and Biotechnology, vol. 29, no. 1, pp. 11– 18, 1988. L. A. Shackelford, D. R. Rao, C. B. Chawan, and S. R. Pulusani, “E?ect of feeding fermented milk on the incidence of chemically induced colon tumors in rats,” Nutrition and Cancer, vol. 5, no. 3, pp. 159–164, 1983. B. R. Goldin, L. J. Gualtieri, and R. P. Moore, “The e?ect of Lactobacillus GG on the initiation and promotion of DMHinduced intestinal tumors in the rat,” Nutrition and Cancer, vol. 25, no. 2, pp. 197–204, 1996. J. Singh, A. Rivenson, M. Tomita, S. Shimamura, N. Ishibashi, and B. S. Reddy, “Bi?dobacterium longum, a lactic acidproducing intestinal bacterium inhibits colon cancer and modulates the intermediate biomarkers of colon carcinogenesis,” Carcinogenesis, vol. 18, no. 4, pp. 833–841, 1997. B. S. Reddy and A. Rivenson, “Inhibitory e?ect of Bi?dobacterium longum on colon, mammary, and liver carcinogenesis induced by 2-amino-3-methylimidazo[4,5-f]quinoline, a food mutagen,” Cancer Research, vol. 53, no. 17, pp. 3914– 3918, 1993. G. H. McIntosh, P. J. Royle, and M. J. Playne, “A probiotic strain of L. Acidophilus reduces DMH-induced large intestinal tumors in male sprague-dawley rats,” Nutrition and Cancer, vol. 35, no. 2, pp. 153–159, 1999. H.-H. Cui, C. L. Chen, J. D. Wang et al., “E?ects of probiotic on intestinal mucosa of patients with ulcerative colitis,” World Journal of Gastroenterology, vol. 10, no. 10, pp. 1521– 1525, 2004. D. Jonkers and R. Stockbrugger, “Probiotics and in?ammatory bowel disease,” Journal of the Royal Society of Medicine, vol. 96, no. 4, pp. 167–171, 2003. M. P. Taranto, M. Medici, G. Perdigon, A. P. Ruiz Holgado, and G. F. Valdez, “Evidence for hypocholesterolemic e?ect of

            [87]

            [88]

            [89]

            [90]

            [91]

            [92]

            [93]

            [94]

            [95]

            [96]

            [97]

            [98]

            [99]

            [100]

            [101]

            12
            Lactobacillus reuteri in hypercholesterolemic mice,” Journal of Dairy Science, vol. 81, no. 9, pp. 2336–2340, 1998. J. Mohan, R. Arora, and M. Khalilullah, “Preliminary observations on e?ect of Lactobacillus sporogenes on serum lipid levels in hypercholesterolemic patients,” Indian Journal of Medical Research, vol. 92, no. 1, pp. 431–432, 1990. A. P. Femia, C. Luceri, P. Dolara et al., “Antitumorigenic activity of the prebiotic inulin enriched with oligofructose in combination with the probiotics Lactobacillus rhamnosus and Bi?dobacterium lactis on azoxymethane-induced colon carcinogenesis in rats,” Carcinogenesis, vol. 23, no. 11, pp. 1953–1960, 2002. R. D. Rolfe, “The role of probiotic cultures in the control of gastrointestinal health,” Journal of Nutrition, vol. 130, supplement 2, pp. S396–S402, 2000. S. F. Solga and A. M. Diehl, “Non-alcoholic fatty liver disease: lumen-liver interactions and possible role for probiotics,” Journal of Hepatology, vol. 38, no. 5, pp. 681–687, 2003. VSL Pharmaceuticals, “VSL#3 The Living Shield,” 2009. K. Madsen, A. Cornish, P. Soper et al., “Probiotic bacteria enhance murine and human intestinal epithelial barrier function,” Gastroenterology, vol. 121, no. 3, pp. 580–591, 2001. E. Esposito, A. Iacono, G. Bianco et al., “Probiotics reduce the in?ammatory response induced by a high-fat diet in the liver of young rats,” Journal of Nutrition, vol. 139, no. 5, pp. 905–911, 2009. D. Adawi, S. Ahrne, and G. Molin, “E?ects of di?erent probiotic strains of Lactobacillus and Bi?dobacterium on bacterial translocation and liver injury in an acute liver injury model,” International Journal of Food Microbiology, vol. 70, no. 3, pp. 213–220, 2001. D. Adawi, F. B. Kasravi, G. Molin, and B. Jeppsson, “E?ect of Lactobacillus supplementation with and without arginine on liver damage and bacterial translocation in an acute liver injury model in the rat,” Hepatology, vol. 25, no. 3, pp. 642– 647, 1997. D. Poncelet, “Microencapsulation: fundamentals, methods and applications,” in Surface Chemistry in Biomedical and Environmental Science, pp. 23–34, Springer, Amsterdam, The Netherlands, 2006. R. M. Hernandez, G. Orive, A. Murua, and J. L. Pedraz, “Microcapsules and microcarriers for in situ cell delivery,” Advanced Drug Delivery Reviews, vol. 62, no. 7-8, pp. 711– 730, 2010. S. Rokka and P. Rantamaki, “Protecting probiotic bacteria by microencapsulation: challenges for industrial applications,” European Food Research and Technology, vol. 231, no. 1, pp. 1–12, 2010. W. Song, Q. He, H. Mohwald, Y. Yang, and J. Li, “Smart polyelectrolyte microcapsules as carriers for water-soluble small molecular drug,” Journal of Controlled Release, vol. 139, no. 2, pp. 160–166, 2009. L. T. Hansen, P. M. Allan-Wojtas, Y.-L. Jin, and A. T. Paulson, “Survival of Ca-alginate microencapsulated Bi?dobacterium spp. in milk and simulated gastrointestinal conditions,” Food Microbiology, vol. 19, no. 1, pp. 35–45, 2002. W. Ouyang, H. M. Chen, M. L. Jones et al., “Arti?cial cell microcapsule for oral delivery of live bacterial cells for therapy: design, preparation, and in-vitro characterization,” Journal of Pharmacy and Pharmaceutical Sciences, vol. 7, no. 3, pp. 315–324, 2004.

            Journal of Biomedicine and Biotechnology
            [117] H. Chen, W. Ouyang, C. Martoni et al., “Investigation of genipin cross-linked microcapsule for oral delivery of live bacterial cells and other biotherapeutics: preparation and in vitro analysis in simulated human gastrointestinal model,” International Journal of Polymer Science, vol. 2010, no. 1, pp. 1–10, 2010. [118] S. Prakash and T. M. S. Chang, “Microencapsulated genetically engineered E. coli DH5 cells for plasma urea and ammonia removal based on : 1. Column bioreactor and 2. Oral administration in uremic rats,” Arti?cial Cells, Blood Substitutes, and Immobilization Biotechnology, vol. 24, no. 3, pp. 201–218, 1996. [119] S. Wee and W. Gombotz, “Protein release from alginate matrices,” Advanced Drug Delivery Reviews, vol. 31, no. 3, pp. 267–285, 1998. [120] A. Haug and B. Larsen, “Quantitative determination of the uronic acid composition of alginates,” Acta Chemica Scandinavica, vol. 16, no. 8, pp. 1908–1918, 1962. [121] J. W. Anderson and S. E. Gilliland, “E?ect of fermented milk (yogurt) containing Lactobacillus acidophilus L1 on serum cholesterol in hypercholesterolemic humans,” Journal of the American College of Nutrition, vol. 18, no. 1, pp. 43–50, 1999. [122] J. Bhathena, C. Martoni, A. Kulamarva, A. M. Urbanska, M. Malhotra, and S. Prakash, “Orally delivered microencapsulated live probiotic formulation lowers serum lipids in hypercholesterolemic hamsters,” Journal of Medicinal Food, vol. 12, no. 2, pp. 310–319, 2009. [123] B. L. Pool-Zobel, C. Neudecker, I. Domizla? et al., “Lactobacillus- and bi?dobacterium-mediated antigenotoxicity in the colon of rats,” Nutrition and Cancer, vol. 26, no. 3, pp. 365– 380, 1996. [124] I. de Smet, L. van Hoorde, N. de Saeyer, M. Vande Woestyne, and W. Verstraete, “In vitro study of bile salt hydrolase (BSH) activity of BSH isogenic Lactobacillus plantarum 80 strains and estimation of cholesterol lowering through enhanced BSH activity,” Microbial Ecology in Health and Disease, vol. 7, no. 6, pp. 315–329, 1994.

            [102]

            [103]

            [104]

            [105]

            [106] [107]

            [108]

            [109]

            [110]

            [111]

            [112]

            [113]

            [114]

            [115]

            [116]


            相关文章:
            更多相关标签: